Math 432: Set Theory and Topology HOMEWORK 13 Optional

- 1. Prove that continuous functions map compact sets to compact sets; more precisely, letting X, Y be metric spaces and $f: X \to Y$ continuous, prove that if X is compact then f(X) is compact.
- 2. Prove the familiar(?) statement from calculus that continuous functions on closed intervals are bounded and attain their maximum and minimum. More generally, let X be a compact metric space and let $f: X \to \mathbb{R}$ be continuous, and prove that f(X) is bounded and attains its maximum and minimum.
- **3.** In Homework 12, you proved $(1) \Leftrightarrow (2)$ of the following.

Theorem. For a metric space X, the following are equivalent:

- (1) X is separable, i.e. has a countable dense set.
- (2) X admits a countable open base.
- (3) Every open cover of X has a countable subcover.

Now prove $(2) \Leftrightarrow (3)$ as follows.

 $(2) \Rightarrow (3)$: Let \mathcal{C} be an open cover and let \mathcal{B} be a countable base for X. Put

$$\mathcal{B}' := \{ U \in \mathcal{B} : \exists V \in \mathcal{C} \text{ with } V \supseteq U \}$$

and for each $U \in \mathcal{B}'$, choose (by Axiom of Choice) a set $V_U \in \mathcal{C}$ with $V_U \supseteq U$. Show that $\mathcal{C}' := \{V_U : U \in \mathcal{B}'\}$ is a cover of X.

 $(3) \Rightarrow (2)$: For each $n \in \mathbb{N}$, let \mathcal{C}_n be the collection of all open balls of radius $\frac{1}{n+1}$. Clearly \mathcal{C}_n is a cover, so there is a countable subcover \mathcal{C}'_n . Show that $\mathcal{B} := \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$ is a countable base for X.